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1. INTRODUCTION 

Theories of fundamental measurement begin with purported qualitative 
laws about observable relations among certain entities, and using these laws 
a numerical representation is constructed which reflects their formal struc- 
ture. The best known example, extensive measurement, arose from an 
analysis of such familiar physical measures as mass and length. In measur- 
ing mass, the classical theory supposes that we can ascertain which of two 
entities has the greater mass by comparing them, for example, on an equal- 
arm pan balance in a vacuum-the one in the pan that drops having, by 
definition, the greater mass. If the comparison of x with y shows that x has 
more than or an amount equivalent to y of the attribute being measured, 
we write xRy. Furthermore, the theory assumes that new entities can be 
generated from old ones by placing two or more of the old ones on a single 
pan. The latter combining operation is called "concatenation," and the new 
entity generated by concatenating x with y is denoted by xoy. 

Various plausible and, to some degree, empirically true assumptions 
about o, R, and their interconnections are stated (for a summary of them, 
see Definition 2 and the discussion following it), from which it is shown 
that we can assign to each entity x a real number q ( x )  in such a way that 
the function p, has the following three properties. First, it is order preserving 
(monotonic), 

xRy if and only if q ( x )  2 q ( y ) ;  

second, it is additive over concatenations, 

and third, any other assignment having the first two properties differs from 
q only by a positive multiplicative factor, i.e., the family of representations 
forms a ratio scale. 

Systematic discussions of these ideas have been given by, among others, 
Campbell (1920, 1928), Nagel (1932), Suppes (1951), and Suppes and 
Zinnes (1963). 

Among the various idealizations embodied in the traditional theory of ex- 
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tensive measurement, one that is rarely, if ever, experimentally fulfilled, 
even approximately, is the postulated freedom to concatenate any two 
elements of the system to form a third that is also within the system. A 
simple finite induction shows that if x is in the system and n is a positive 
integer, then concatenations of n elements each of which is equivalent to x 
is also in the system. Denoting this element by nx, then if an additive 
representation p, exists, we have p,(nx) = ngj(x). Thus, in theory, p, is un- 
bounded. In measuring mass with a pan balance, one obviously cannot 
concatenate freely without either damaging the balance or running out of 
space. 

It appears that most theorists believe that this practical limitation places 
an unavoidable limit on the precision of measurement: specifically, that if 
this limitation were incorporated into the theory it would either make it 
impossible to construct a numerical representation or, if the construction 
were possible, two representations would not necessarily be related by a 
similarity transformation, i.e., the theory would not lead to a ratio scale 
representation. As we shall see, neither alternative is true. Precise ratio 
scales over finite sets of elements are possible provided that the usual 
axioms are modified slightly. The basic fact is that it is unnecessary to 
construct actual concatenations of indefinitely many replicas of a given 
element in order to achieve precision; five subdivisions do just as well, as 
has been accepted in practice. 

The single major exception to the comments of the last paragraph 
is Behrend (1956), whose work was only brought to our attention (by 
Richard Robinson, whom we thank) after the present paper was com- 
pleted. Behrend gave a system much like that of Definition 2, and he proved 
the same representation as given in Theorem 5. We cite the differences 
between the two systems following Definition 2. Behrend's proof is sub- 
stantially the same as ours. Nonetheless, we prove the result here for three 
reasons: first, for completeness; second, because Behrend's paper does not 
seem to be widely known; and third, because our proof differs in some ways, 
including the fact that it covers the case where indifference is not equality. 
(A similar development for additive conjoint measurement [Luce and 
Tukey, 19641 can be found in Luce, 1966.) 

A second limitation of the traditional theory is its failure, even when 
there is no restriction on concatenation, to take into account the possibility 
that the system may have a maximal element. The best known example is 
velocity: according to the theory of relativity, no velocity may exceed 
that of light. This is true in spite of the fact that, in principle at least, any 
two velocities may be concatenated (superimposed) to form a new one; it 
simply means that they summate in a particular way so that the resultant 
velocity remains less than or equal to that of light. With this example in 
mind, we also wish to modify the axioms so as to admit the possibility that 
maximal elements may exist. 
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2. THE AXIOMS 

The axiom system given in Definition 2 is a modification of Suppes' 
(1951 ) and Behrend's (1956) systems; the exact nature of the modifica- 
tion is pointed out following the formal statement of the system. 
Definition 1. Let A be a non-empty set, B a non-empty subset of AX A, R 
a binary relation on A, and o a binary function from B into A. An element 
a&A is maximal relative to R and o if, for all XEA, aRx, and there is some 
XEA such that (a,x)~B. 

For brevity,we sometimes refer to an element simply as maximal without 
specifying that it is relative to R and o. 
Definition 2. Let A be a non-empty set, B a non-empty subset of  A x  A, 
R a binary relation on A, and o a binary function from B into A. The 
quadruple <A,B,R,o> is called an extensive system i f ,  for all x,y,zeA, 
the following five axioms hold: 

1. R weakly orders A. 
2. I f  (x ,y )~B and (xoy,z)~B, then (y,z)~B, (x,yoz)~B, and (xoy)ozRxo- 

(yoz). 
3. I f  (x,z)EB and xRy, then (z,y )EB and xozRzoy. 
4. I f  not xRy, then there exists an element y-XEA such that (x,y-x)EB, 

yRxo (y-x) , and xo ( y-x) Ry. 
5.  Let n be a positive integer. For n = 1, define lx=x. For n > 1, i f  

(n- 1 ) x is defined and ( (n- 1 ) x,x) EB, then define nx = (n-1 ) xox. For 
all non-maximal YEA and all XEA, the set 

{nln is a positive integer and yRnx) 
is fiite. 

The major changes introduced into Suppes' system are these: 
(i) R is assumed to be a weak order, not just transitive; Suppes' proof 

that R is connected depends on properties of o that we no longer possess, 
and so we are forced to add that property explicitly. 

(ii) Suppes' Axiom 2 says, in essence, that B = A x A. We have weakened 
it considerably by requiring the properties specified in Axioms 2-4. Among 
other things, it is shown in Lemma 1 that if x and y can be concatenated, 
then so can y and x and so can any pair of elements that, under R, are 
dominated by x and y. Both of these conditions are likely to be satisfied 
by any empirically interesting interpretation of the system. 

(iii) Axioms 2-4 are the same as Suppes' Axioms 3-5 provided only that 
the relevant concatenations are possible. 

(iv) Suppes' system includes between our Axioms 4 and 5 the axiom that 
for all x,y~A, not xRxoy. As we show in Theorem 1, the somewhat weaker 
statement xoyRx follows from the other axioms, and in Theorem 2 we show 
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that Suppes' axiom is equivalent to the assumption that there are no 
maximal elements. 

(v) With unrestricted concatenation, the Archimedean Axiom 5 can be, 
and usually is, stated as follows: if yRx then there exists a positive integer 
n such that nxRy. In the presence of the other axioms and with unrestricted 
concatenations (i.e. B = A  x A), it is clear that our formulation is equivilent 
to the usual one. When concatenation is restricted, the usual formulation 
is meaningless and so something like our Axiom 5 is needed. Using velocity 
as a guide, we have assumed that the Archimedean property holds only 
for non-maximal y. Of course, if B is finite, as it will be in practice, Axiom 
5 is satisfied trivially. 

The relation to Behrend's (1956) system is as follows. 
(i) Let xIy if xRy and yRx and xPy if xRy and not yRx. Behrend as- 

sumed I to be equality, and he used two of its usual properties, specifically, 
substitutability and the fact that it is an equivalence relation. For this rea- 
son, he needed only to assume that R is connected; however, with I dif- 
ferent from equality we must assume R is a weak ordering. In particular, 
his proof that P is transitive is no longer valid. 

(ii) Behrend stated Axiom 2 in terms of I with the existence of the 
concatentations on the right implying those on the left, rather than the other 
way round. 

(iii) Instead of Axiom 3, Behrend assumed: if (x,z)EB, then xIy if and 
only if (y,z)~B and xozIyoz; and if (z,x)EB, then xIy if and only if ( z ,y )~B 
and zoxIzoy. He showed that the analogous statements hold for P and that 
I is commutative. 

(iv) Axiom 4 is unchanged. 
(v) As in Suppes' system, the property xoyPx is assumed. 
(vi) His Archimedean condition is essentially as we have given it. 
The following simple example establishes that these changes are sig- 

nificant in the sense that a system with very few elements can fulfill the 
axioms, an additive representation exists, and it is a ratio scale: 

A = {a,b,c,d,e), 
B = {(e,e), (d,e), (e,d), (c,e), ( e , ~ ) ) ,  
o:eoe = c, doe = eod = b, coe=eoc=a, 
R: aIbPcIdPe, 

where P and I have their usual meanings and R includes all implications 
that follow from transitivity. It is routine to see that the axioms are fulfilled, 
that if p satisfies 

where p(e) > o, it is an extensive (additive over o)  representation, and 
that any extensive representation is of this form. 
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3. A PROPERTY OF MAXIMAL ELEMENTS 

Throughout this section the axioms of Defintion 2 are assumed to hold, 
and P and I are defined in terms of R in the usual way. 
Lemma 1. I f  (x ,y)~B,  then (y ,x)~B;  and if in addition xRu and yRV, 
then (u,v)EB and xoyRuov. 
Proof. By Axiom 1, xRx and so by Axiom 3, (y,x)~B. Since xRu, Axiom 
3 yields ( y , u ) ~ B  and xoyRyou. Similarly, (u,v)EB and youRuov, and so 
by Axiom 1, xoyRuov. QED 
Lemma 2. I f  (x ,y)~B,  then xoyIyox. 
Proof. By Lemma 1, (y,x)~B. Since, by Axiom 1, xRx, Axiom 3 yields 
xoyRyox. Similarly, yRy yields yoxRxoy. QED 
Lemma 3. I f  (x,y ) , (xoy,z) EB, then (xoy ) ozIxo ( yoz) . 
Proof. Immediate from Axiom 2 and Lemma 2. QED 
Note that Lemmas 2 and 3 imply that the ordering and grouping of con- 
catenations is a mere matter of convenience, once we have assured their 
existence. 
Theorem 1. I f  x ,y~A and (x,y)~B, then xoyRx. 
Proof. Suppose that, contrary to the assertion, xPxoy. By Axiom 4 and 
Lemma 3, there exists z = (x-xoy)~A such that xI(xoy)ozIxo(yoz). By 
Lemma 1 and Axiom 3, xPxoyR(xoy)oyIxo2y, and so by a finite induc- 
tion, xPxony for all positive integers n. Putting these two observations to- 
gether, xo(yoz)IxPxony, and so by Axioms 1 and 3, yozRny. Axiom 5 
implies, therefore, that yoz is maximal, and in particular yozRx. Thus, by 
Lemma 1 and Axiom 3, xIxo(yoz)Rxox, and so by another finite induc- 
tion and Axiom 5 we conclude that x is also maximal. Thus, xRy. Suppose 
that xPy, then since xR(x-y), Axioms 3 and 4 imply that yo(x-y) 
IxPxoyR(x-y)oy, which is impossible by Lemma 2 and Axiom 1. So yIx, 
and thus xPxox. Since x is maximal and xPxoy, Axioms 3 and 4 yield 
xoxR (xoy ) o (x-xoy ) Ix, which contradicts xPxox. QED 
Lemma 4. I f  a , b ~ A  are both maximal, then aIb. 
Proof. Trivial. QED 
Theorem 2. I f  a,xeA and (a,x)&B, then a is maximal relative to R and 
o if and only if aIaox. 
Proof. If a is maximal, then by Defintion 1, aRaox. By Theorem 1, aoxRa; 
hence, aIaox. 

Conversely, suppose that aIaox and that a is not maximal. Since (~ ,x )EB,  
Lemma 1 implies that (aox,x)&B and so by Axiom 3 and Lemma 3, 
aIaoxI(aox) oxIao2x. By induction, for every positive integer n, nx exists 
and aIaonx. Since, by assumption, a is not maximal, Axiom 5 implies 
that, for some n, nxPa. So, by Axiom 3, aIaonxRaoa. Coupled with 
Theorem 1, this means aIaoa. A finite induction then shows that for every 
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positive integer m, ma exists and aIma. As this is impossible by Axiom 5, 
it follows that a must be maximal. QED 
Corollary. In an extensive system, the assumption that there is no maxi- 
mal element relative to R and o is equivalent to the assertion that for all 
x,yeA such that (x,y)~B, then not xRxoy. 
Proof. Theorems 1 and 2. QED 

4. PRELIMINARY RESULTS WHEN NO MAXIMAL 
ELEMENT EXISTS 

Throughout this and the next section we assume the first four Axioms of 
Definition 2 and the property (stated in the Corollary to Theorem 2) that 
not xRxoy. Axiom 5 is not used again until Section 6, and then only once. 
Lemma 5. I f  (x,u), (y ,u )~B and xouRyou, then xRy. 
Proof. Suppose, on the contrary, not xRy, then by Axiom 4, yIxo(y-x). 
Thus, xouRyouIxo ( y-x) ouI (xou) o ( y-x) , which contradicts the Corollary 
to Theorem 2. QED 
Lemma 6. I f  (x,y ) EB, xPu, and yPv, then (x-u,y-v) EB and (x-u) o ( y-v) 
I (xoy-uov) . 
Proof. By the definitions of x-u and y-v and Theorem 1, xR(x-u) and 
yR(y-v), and so by Lemma 1 (x-u,y-v)cB. By Lemmas 1, 2, and 3, 

xoyIuo(x-u) 0yI (x-u) 0 (uoy ), 
uoyIuovo (y-v) I (y-v) 0 (uov) . 

So, by Lemma 1, 

But, by definition, 

xoyI (xoy-uov) 0 (uov) , 

and the result follows by Axiom 1 and Lemma 5. 
Corollary. If (x,y)~B and xPu, then (x-u) I (xoy-uoy ) . 
Proof. From the proof of Lemma 6, 

QED 

(x-u)o (uoy) IxoyI (xoy-uoy) o(u0y ) , 

and the result follows by Lemma 5. QED 
Lemma 7. If (mx,nx)~B, then (m+ n)x is defined and (m +n)xIrnxonx. 
Proof. By induction and using Lemmas 2 and 3, 

mxonxImxo [(n-1 )xox]I (m+ 1 )xo(n-1 )x . . . . I(m +n)x. QED 

Lemma 8. There exists e&A such that (e,e)~B. 
Proof. Since B is non-empty, there exists (x,y)~B. Either xRy or yRx. 
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If the former, then it with yRy implies, by Lemma 1, that (y,y)~B. If the 
latter, (x,x)EB. QED 
Corollary. I f  eRx and eRy, then (x,y)~B. 
Lemma 9. If eRx, eRy, eRz, xoyPe, and yoxPe, then xo(yoz-e)I- 
(xoy-e) oz. 
Proof. Since eoeRxoyI (xoy-e) oe, Lemma 5 yields eR(xoy-e) . Similarly, 
eR(yoz-e). Hence by the Corollary to Lemma 8, the asserted concatenations 
exist. Let u=e-y. If uRz, then by Lemma 1 we obtain eIuoyRzoy, con- 
trary to assumption; so zPu. By the definition of z-u, xozIxo(z-u)ou, 
and so by the definition of xoz-u, (xoz-u)Ixo(z-u). From the Corollary 
to Lemma 6, (z-u)I(yoz-uoy)I(yoz-e) ; hence by Lemma 1, (xoz-u) 
1x0 ( yoz-e ) . In a similar manner, (xoz-u) I (xoy-e) oz, and the result 
follows by Axiom 1. QED 
Lemma 10. If eRx, eRy, eRz, xoyPe, and eRyoz, then (x,yoz)~B, 
xoyozPe, and (xoy-e) ozI (xoyoz-e) . 
Proof. From eRyoz and eRx, the Corollary to Lemma 8 shows that 
(x,yoz)~B. Moreover, if eRxoyoz, then Theorem 1 yields eRxoy, contrary 
to assumption. Finally 

(xoy-e) ozoeI (xoy-e) oeoz 
Ixoyoz 
I (xoyoz-e) oe, 

and the result follows by Lemma 5. QED 

5. CONSTRUCTION OF AN ORDINARY EXTENSIVE SYSTEM 

DeAnition 3. Suppose that a = <A,B,R,o>is an extensive system and 
let eeA be a fixed element for which (e , e )~B (see Lemma 8). The system 
a, = <&,Re,*> is defined.by: 

A, = {(m,x) lm is a non-negative integer, XEA, and eRx). 
Re: (m,x)R,(n,y) if either m > n or m = n and xRy. 

(m +n,xoy) if eRxoy *: (m,x) *(n,y) = 
(m + n + 1 ,xoy-e) if xoyPe. 

Note that * is well defined since, by the Corollary to Lemma 8, eRx and 
eRy imply (x,y) EB; and if xoyPe then eR(xoy-e) since the converse, 
(xoy-e)Pe, leads to the contradiction 

xoyI (xoy-e ) oePeoeRxoy. 

It is clear that * is commutative. 
Theorem 3. I f  Axioms 1-4 hold and if there is no element that is maximal 
relative to R and o, then the system a, satisfies Suppes' axioms for an 
extensive system. 
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Proof. 1. Re is obviously a weak order. 
2. * is obviously a function from A,x A, into 4. 
3. To show the associativity of *, observe that by definition, 

[m + n + p,xoyozl if eRxoy and eRxoyoz 
[m + n + p  + 1, (xoy-e) oz] if xoyPe and eR (xoy-e) oz 

[ (m,x)*(n ,~) l* (~ ,z )  = [m+n+p+ l,xoyoz-e] if eRxoy and xoyozPe 
[m + n + p + 2, (xoy-e) oz-el if xoyPe and (xoy-e) ozPe 

and 
[m + n + p,xoyozl if eRyoz and eRxoyoz 
[m + n + p + 1 ,xo ( yoz-e) ] if yozPe and eRxo ( yoz-e) 

(m,x) * [ ( n , ~ )  * ( ~ , z ) l  = [m+n+p+ l,xoyoz~el if eRyoz and xoyozPe 
[m +n + p + 2,xo ( yoz-e) -el if yozPe and xo ( yoz-e) Pe 

There are four cases: 
(i) If eRxoy and eRxoyoz, then, by the Corollary to Theorem 2, eRyoz, 

and so the first line holds in each case and they are identical. 
(ii) If xoyPe and eR(xoy-e)oz, then either yozPe or eRyoz. If the 

former, eR(xoy-e)oz together with Lemma 9 yields eRxo(yoz-e), and so 
the second line holds in each case and they are equivalent. If the latter, 
Lemma 10 yields xoyozPe. So the second line of the first expression and 
the third line of the second expression hold and, using Lemma 10, these 
expressions are equivalent. 

(iii) If eRxoy and xoyozpe, then either eRyoz or yozPe. If the former, 
the third line holds in each case and they are identical. If the latter, we 
show eRxo(yoz-e) in which case the second line of the second expression 
holds and, using Lemma 10, it is equivalent to the third line of the first 
expression. Suppose that xo ( yoz-e) Pe, then xoyozIxo ( yoz-e)oePeoeR 
(xoy) oz, a contradiction. 

(iv) If xoyPe and (xoy-e)ozPe, then yozPe. For suppose, on the con- 
trary, that eRyoz, then with eRx we obtain the contradiction eoeRxoyozI 
(xoy-e) oeozPeoe. Lemma 9 then yields xo ( yoz-e) I (xoy-e) ozPe, and so 
the fourth line of the second expression also holds and, using Lemma 9,. 
these expressions are equivalent. 

4. Suppose that (m,x)&(n,y), then we wish to show that (m,x) 
*(p,z)%(n,y) + (p,z). If m > n, then there are four cases: 

(i) If eRxoz and eRyoz, then (m,x) * (p,z) = (m +p,xoz)%(n + 1 +p, 
xoz)%(n+p,yoz) = (n,y) *(p,z). 

(ii) If eRxoz and yozPe, then xozR(yoz-e) since otherwise we obtain 
yozP(yoz-e) oeRxozoe, whence, by Lemma 5, yPxoePe, contrary 
to choice of y. Thus, (m,x) *(p,z) = (m+p,xoz)R,(n+ 1 +p, 
xoz)%(n+ 1 +p,yoz-e) = (n,y)*(p,z). 

(iii) If xozPe and eRyoz, then 
(m,x)*(p,z) = (m+p+l,xoz-e)Re(n+p+2,xoz-e)%(n+p, 
yoz) = (n,y)*(p,z). 
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(iv) If xozPe and yozPe, then 
(m,x)*(p,z) = (m+p+ 1,yoz-e)R,(n+p+2,xoz-e)R,(n+p+ 
1,yoz-e) = (n,y)*(p,z). 

Alternatively, m = n and xRy, in which case there are again four cases: 

(i) If eRxoz and eRyoz, then the result is immediate by Axiom 3. 
(ii) The case where eRxoz and yozPe is impossible since Axiom 3 and 

xRy imply the contradiction eRxozRyozPe. 
(iii) If xozPe and eRyoz, then 

(m,x) *(p,z) = (m+p+ 1,xoz-e)I,(n+p+ 1,xoz-e)R,(n+p, 
yoz) = (n,y) *(p,z). 

(iv) If xozPe and yozPe, then 
(m,x)*(p,z) = (m+p+ 1,xoz-e)I,(n+p+ 1,xoz-e)R,(n+p+ 
1,yoz-e) = (n,y ) * (p,z) because the supposition (yoz-e) P 
(xoz-e) yields 

yozI ( yoz-e) oeP (xoz-e) oeIxoz, 

which, by Lemma 5, implies yPx, contrary to assumption. 
5. Suppose that not (m,x)R,(n,y), i.e., (n,y)P,(m,x), then we show 

that some (p,z) exists for which (n,y)I,(m,x)*(p,z). If n > m, then 
either yPx, in which case (m,x) * (n-m,y-x)I,(n,y) ; or xIy, in which case 
(m,x) * (n-m-l,e)I,(m,xoe-e)I,(n,y) ; or xPy, in which case 
(m,x) * (n-m- 1, eoy-x) I, (n,eoy-e) I,(n,y ) . If n = m and yPx, then 
(m,x) * (0,y-x)I,(n,y). 

6. Next we show that not (m,x)%(m,x) * (n,y). 
By definition, 

If xoyPe, then m+ n + 1 > m and we are done. If eRxoy, the same argu- 
ment holds if n > 0. If n = 0, then (m,x) * (O,y)P,(m,x) because xoyPx 
by the Corollary to Theorem 2. 

7. Suppose that (m,x)R,(n,y). Choose any integer k such that kn > m, 
then 

6. IMBEDDING OF a/I IN A,/I, 

QED 

Throughout this section we deal only with the systems that result by 
treating as elements the equivalence classes under, respectively, the equiv- 
alence relations I and I,. Letters from the begining of the alphabet will be 
used to denote these classes and = replaces I and I,; e denotes both the 
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element of Definition 3 and its equivalence class. We now invoke all five 
axioms of Definition 2 plus the assumption of no maximal elements. 
Definition 4. The subsystem a', = <A',, B',, R',,*'> of a, is defined by: 

A', = {(N,,a,) la&A/I, N, = max{nlaPne), a, = a-N,e), 
B'e = {((Na,ae), (Nb,be)) l (a ,b)~B/I) ,  
R', is the restriction of Re to A',, 
*' is the restriction of * to B',. 

Note that by Axiom 5, N, exists. 
Lemma 11. eRa,. 
Proof. Suppose that a,Pe. Since (a,,N,e)rB/I, it follows from Lemma 1 
that (e,N,e) cB/I, and so 

a = N,eoa,PN,eoe = (N, + l ) e ,  

contrary to the choice of N,. QED 
Theorem 4. If a is an extensive system with no element that is maximal 
relative to R and o, then the subsystem a', is isomorphic to a/I. 
Proof. The mapping a ct (N,,a,) is 1 : 1. For suppose N, = Nb = N and 
a, = be, then a-Ne = b-Ne and so a = (a-Ne)oNe = (b-Ne)oNe = b. The 
converse is obvious. 

The mapping is order preserving. If aRb, then clearly N,%Nb. If 
N, > Nb, then (N,,a,)R',(N,,b,). If N, = Nb = N, then a, = (a-Ne)R 
(b-Ne) = be, and again the result follows. The converse is similar. 

The mapping preserves o. Suppose that (a,b)rB/I and c = aob. Since 
aRN,e and bRNbe, then by Lemma 7, aobRN,eoNbe = (Nu + Nb)e. Thus, 
N ,ZN,  +Nb.  Let N , - N , + N b = k .  By Lemma 6, 

a,ob, = [aob-(Nu + Nb)e]P[N,e-(N, + Nb)e] = ke. 
So, if eRa,ob,, k = 0, i.e., N, = N, + Nb and a,ob, = c,. Otherwise, 
a,ob,Pe. Since eoeRa,ob,, it follows that k 4  1. But since [aob- 
(N, + Nb)e]Pe, aobP(N, + Nb + l ) e ,  and so k = 1, from which the result 
follows. 

Conversely, suppose that 

(Nc,ce) = (N,,ae)*(Nb,be) = 
(N, + Nb,aeobe) if eRa,ob, 
(N, + Nb + l,a,ob,-e) if a,ob,Pe. 

In the iirst case, 

c = ceoNce 
= a,ob,o(N, + Nb) e, 

and in the second 
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But, by Lemma 6, 

(&ob,)o(N, + Nb)e = (a-N,e)o(b-N,e)o(N, + Nb)e 
= [aob-(N, + N,)eIo(N, + Nb)e 
= aob. QED 

7. REPRESENTATION AND UNIQUENESS THEOREMS 

Theorem 5. If a = <A,B,R,o> is an extensive system with no element 
that is maximal relative to R and o, then there exists a positive real-valued 
function q on A such that 

(i)  xRy if and only if cp(x) A cp(y); 
(ii) if (x,y)cB, p(xoy) = cp(x) + p(y) 

Proof. Suppes (195 1 )  proved the existence of such a function for any 
system fulfilling his axioms, in particular for a,. The restriction of it to a', 
transformed isomorphically by Theorem 4 to a completes the proof. QED 
Theorem 6. If cp and + are two functions fulfilling Theorem 5, then there 
exists a constant a > o such that Q = a*. 

Proof. With no loss of generality, we may suppose that q(e) = $(e) = 1 and 
then show cp = +. Suppose that p(x) # +(x),  then since x,oN,eIx, we see 
immediately that p(x,)#+(x,). But since in a,, q(n,x) = n + cp (x ) ,  this 
implies non-unique additive scales on a,, contrary to Suppes' uniqueness 
theorem. QED 
Theorem 7. If < A,B,R,o > is an extensive system with no element that 
is maximal relative to R and o, and if B is finite, then one, and so an infinity, 
of the representations of Theorem 5 is into the positive integers. 
Proof. Since B is finite, so is the set 

C = {xlxcA and there exists ycA such that (x,y)&}. 

Choose e to be the least element of C under the ordering R. By Lemma 1, 
(e,e)&; moreover, if acA, then aRe since if ePa then, by Lemma 1, ( a , a )~B ,  
which contradicts the choice of e. Thus, by Lemma 11 the elements of A', 
of Definition 4 must each be of the form (Nx,e), where XCA/I and N, is a 
nonnegative integer. Hence, by Theorems 4 and 5, any representation cp has 
the property that 

Choosing cp so that q(e) is a positive integer establishes the result. QED 
Note that, in practice, representations into the rationals, rather than into 

the integers, are usually used because it is rarely convenient to take as the 
unit the smallest element of C. 
Theorem 8. Suppose that < A,B,R,o > is an extensive system with at least 
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one element a that is maximal relative to R and o. Let A' be A with all 
maximal elements deleted, R' be the restriction of R to A', B' = {(x,y) ( 
x,yrA',(x,y)tB,xoyrA'}, and o' be the restriction o f  o to B'. Then if A' and 
B' are both non-empty, < A',B',R',o' > is an extensive system with no 
maximal element. 
Proof. We need only check the axioms of Def. 2, and it is clear that they 
are all satisfied except, possibly, 4. It could fail if, in the original system, 
aI(y-x). In that case, however, yIxo(y-x)IxoaIa, which contradicts the 
choice of yrA'. QED 
Theorem 9. Suppose that < A,B,R,o > is an extensive system with at 
least one element a that is maximal relative to R and o. Let < A1,B',R',o' > 
be defined as in Theorem 8, suppose that A' and B' are non-empty, and let 
C be any positive real number. 

1. I f  there exist u,v~A' such that (u,v)rB and uovRa, then there exists a 
positive real-valued function cp on A such that for all x,y~A, 

i)  xRy if and only if  cp(x) A cp(y), 
ii) cp(x) = C if xIa, 
iii) if (x,y)rB', then cp (xoy) = cp(x) + cp (y). 

2. If for all x,ytA', (x,y) rB implies not xoyRa, then there exists a positive 
real-valued function @ on A such that for all x,y~A 

i) xRy i f  and only if @ (x) A @ (y ) , 
ii) @(x) = C if xIa, 
iii) if (x,y)J3, 

Proof. By Theorems 5 and 8, there exists an additive function cp over A' 
1. Choose the unit of cp so that p(u) + cp(v) < C and assign cp(x) = C 

if xIa. Parts ii and iii are clearly met. To show i it is sufficient to show that if 
xA', then cp(x) 4 ~ ( u )  + cp (v) .  This is obvious if either uRx or vRx, so 
we assume that xPu and xPv. By Axiom 4, there exists x-utA' such that 
(u,x-u)rB' and xIuo(x-u) . Thus, 

uovIaPxIuo (x-u) , 

from which it follows that vR(x-u) since the contrary leads to a contra- 
diction by Axiom 3. So, by properties of cp, 

2. Define 

@(x) = 
tanh ((x) if aPx 

if aIx 
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Since tanh is strictly monotonic increasing and < 1, it is clear that parts 
i and ii hold. Using elementary properties of tanh, part iii follows for those 
x,yrA' for which (x,y)rB since, by assumption, (x,y)rB'. If (x,y)rB and 
either x or yIa, then by Theorem 2, xoyIa, and by substituting @(a) = C in 
both sides of part iii we see that it still holds. QED 

Property 2, iii of Theorem 9 is the well-known formula for the relativistic 
"addition" of velocities. It is obvious from the proof of part 1 that an 
additive representation also exists if one is willing to assign co to a maximal 
element (in the case of velocity, that of light) and extend + in the usual 
way. Such a representation of velocity fails, however, to have the property 
that velocity equals the distance traversed divided by the time it takes. Evi- 
dently, physicists have preferred to retain the latter derived property and 
to sacrifice the simple additive representation of concatenation. Perhaps 
non-additive representations should be kept in mind in other sciences, even 
when additive ones exist. 

In the same vein, it is important to recognize that the representation given 
in part 2 of Theorem 9 is by no means the only one possible-it is simply 
the one that has arisen in the theory of relativity. Specifically, let f be any 
monotonic increasing function that maps the positive reals onto the open 
interval (0,C) with the property that there exists a function F of two 
variables such that f(x+ y) = F[f(x),f(y)]. Then 

has properties 2,i and 2,ii of Theorem 8 and property 2,iii is replaced by: 

Many results on functional equations of the type f(x +y) = F[f(x) ,f (y)] 
are given in Section 2.2 of Aczel (1966). 

8. FUNDAMENTAL MEASUREMENT OF TIME DURATION 

Although the theory of extensive measurement is widely accepted as a 
suitable mathematical framework for the fundamental measurement of 
some basic physical quantities, in particular mass and length, its role in 
justifying other measures, such as velocity and time, has seemed somewhat 
less secure to some authors. Of the two, the former has been the less vexing 
since if both length and time can be measured fundamentally, then velocity 
can be handled as a derived measure. In fact, as we have seen in Theorem 8, 
it can also be treated as a fundamental quantity provided that a non-addi- 
tive representation is accepted. 

Time is rarely discussed in detail in connection with presentations of 
fundamental measurement schemes, and some authors seem to believe that 
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it cannot be handled by extensive measurement methods. In fact, however, 
Campbell (pp. 550-553 of the 1957 edition) outlined a suitable interpreta- 
tion for measuring time durations, but this seems to have been overlooked, 
perhaps because his exposition is a bit opaque. It may, therefore, be worth 
restating it here. The entities of A are (the periods of) a family of pendu- 
lums and their concatenations as defined below. The ordering R is deter- 
mined as follows: if pendulums x and y are started at exactly the same 
time (say by placing them side by side and releasing them together by 
dropping a supporting rod) and if x fails to complete its first period before 
y completes its first period, then xRy. The concatenation xoy denotes any 
pendulum with the following property: if xoy and x are released at the 
same time and if y is released exactly when x completes its first period (doing 
this would be non-trivial in practice), then xoy and y will complete their 
first periods at exactly the same time. 

With these interpretations, it is no more difficult to be convinced that the 
axioms of extensive measurement (with no maximal element) are fulfilled 
than it is with the usual interpretations for mass and length. As there, some 
care is needed in the choice of pendulums to be sure that Axiom 4 is satis- 
fied. Moreover, our modification of the axioms to permit restrictions on the 
freedom to concatenate possesses practical advantages-temporal rather 
than spatial-similar to those for mass and length. The construction of a 
standard series based upon n concatenations of a duration with itself is 
especially simple: one merely counts off n periods of the pendulum (of 
course, one must verify that any two periods of an uninterrupted sequence 
are equivalent in the sense that each matches the first period of some other 
pendulum ) . 

NOTES 
1.  We are endebted to Patrick Suppes for his critical comments on earlier drafts 

and, in particular, for his suggestion that Theorem 7 be proved. 
2. The first author worked on the problem both at the University of Pennsylvania 

and at the Center for Advanced Study in the Behavioral Sciences. During the earlier 
phase he received partial support from National Science Foundation Grant GB-1462 
to the University of Pennsylvania, and during the later phase he was a National 
Science Foundation Senior Postdoctoral Fellow. 

3. The second author was a Fellow of the Miller Institute for Basic Research in 
Science at the University of California, Berkeley, during the period of this work. 
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